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Abstract

A finite element computer code, STAGS C-i, was used to

study the effects surface imperfections and cutouts have on

the load bearing capability and the displacement patterns of a

graphite-epoxy panel. A nonlinear collapse analysis was

* .l conducted on two different ply layups each with five different

surface imperfection patterns. In addition three different

ply orientations were studied each having two different size

cutouts (a two inch by two inch square and a four inch by four

inch square).

The nonlinear branch of STAGS C-i uses a energy

technique using the nonlinear stiffness matrix that was gener-

ated by using the Sanders' strain displacement equations.

STAGS did a very good job in calculating the collapse load and

-displacements of a panel with surface imperfections when

compared with an experimentally tested panel.

It was found that as the number of surface imperfec-

tions is increased, the collapse load decreases until there

are nine surface waves. After that, the collapse load
increases with increasing imperfections. An imperfection

pattern that models the linear bifurcation eigenvector did not

*i have the lowest collapse load as was believed. The displace-

ment pattern followed the initial surface imperfections in

all cases.
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The collapse characteristics of composite panels are

dependent on the ply layup and size of the cutout. Small cut-

outs had a displacement pattern that was not expected and is

different than the larger cutouts. Changing the vertical

boundary conditions on the panel with the small cutout had a

negligable effect.

xi

. ..-.... " " ' - ' ' ' " ,i . . ', ,: ". .



INTRODUCTION

Background

Composite materials are being used more frequently in

the aircraft industry. Because of their high strength to

weight ratio when compared to conventional materials, compos-

ite materials are proving to be invaluable in the design and

manufacture of high performance aircraft. However, in order

to use composite materials in the aircraft industry, a higher

level of understanding of the materials behavior and the

effects of imperfections and cutouts will have to be known.

Various studies have been done on the buckling of

composite panels and plates under axial compression both exper-

imentally and analytically [1-11]. In the analytical studies

done, the authors in references [1-7] assumed no surface imper-

fections in the panels. However, they stated in their work

that composite panels are very sensitive to surface imper-

fections. This imperfection sensitivity was demonstrated both

analytically and experimentally by Bauld et. al. in references

[8-11]. In the analytical studies referenced with surface

imperfections, all imperfections were axially symmetric.

Bauld, in his experimental study for the Air Force Flight

Dynamic Lab [10], actually measured surface imperfections on

'graphite epoxy panels, and tested them to the collapse load.

1
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Therefore, little is known about how different surface imper-

fections affect the behavior of composite panels.

Very little information on composite panels with

cutouts could be found. There have been studies done on

cutout reinforcement in composite shells [12] and two studies

" by Starnes et.al. have been done on flat rectangular graphite-

epoxy plates with either surface damage or cutouts [13,14].

No studies were found relating the effect of cutouts on curved

composite panels. Thus, in order to use composite panels in

the aircraft industry, a greater understanding of the effect

of surface imperfections and cutouts on a compostie panel is

needed. This thesis is an attempt to bring a greater under-

standing to this area.

Approach

A nonlinear analysis using the STAGS C-1 computer code

has been used. A nonlinear analysis was chosen for two

reasons. First, an imperfection on the surface of a panel is

a true geometric imperfection. In order to handle this satis-

factorily, a nonlinear analysis must be performed. Secondly,

a cutout produces a geometric discontinuity within the panel.

Therefore, in both situations a nonlinear solution algorithm

will have to be used.

The imperfections are going to be input using features

built into STAGS. Thus, the imperfections that are incor-

4 porated become more abstract than discrete. They will be

2



. symmetric about a point and will be described as sine waves

- with given maximum amplitudes and wavelengths generating

vertically and horizontally from a specified point. This type

of imperfection is more design oriented and can be measured as

the variance in the surface of a composite panel. Experi-

mental comparisons have been carried out for a panel whose

surface imperfections were measured and tested. An analytical

study has also been carried out on the effect of various

shapes of surface imperfections on a composite panel.

After completing the surface imperfection portion, a

study has been made on the effect of ply layup and cutout

size. The cutouts considered are located at the center of the

panel. Two different size cutouts have been studied with

01 three different composite panel ply orientations. Also, an

experimental investigation has been conducted on panels with

small cutouts to verify the results of the analytical study.

THEORY

Basic Theory

STAGS is a computer code developed by B. 0. Almroth,

F. A. Brogan, and G. M. Stanley of the Lockheed Palo Alto

Research Laboratory for the structural analysis of general

shells. The code was originally developed in 1967 using

finite differences and was sponsored by the Lockheed Missle

and Space Company [151. There have been many revisions and

3



improvements added since the initial development. The current

version C-1 (last revised in 1979) is an energy based finite

element code using the Kirchoff-Love hypothesis [16, 17].This

thesis is investigating the static nonlinear collapse of

composite panels. Therefore, the problem is that of

satisfying the equations of static equilibrium.

EF= 0 (1)

With the sum of the forces equal to zero, the total potential

energy must be stationary and the first variation of potential

energy will equal zero. The total potential energy of a body

is the strain energy of the body minus the work done on the

body.

V= U - W (2)

The work done on the body is the sum of the displacements

times the externally applied forces.

W= {X}T (F) (3)

{X is the vector of displacements and

(F) is the vector of externally applied forces.

4



.. The strain energy of a body is [181

SVolume +Y dVolume. (4)

STAGS uses the strain displacement relations based on the

middle surface kinematic relations of the Sanders' equations.

Therefore, the midsurface strains are [9]

0 2 2 _Wo 4~ x  (5)E x U +f 1 ,X 5

o , W 2 2 (6)"',£ y +W 1 - O¢ -oxy
yy

2E0 =v,, +u U w + -W W (7)xy x  y x y o,y y o,y x

and the midsurface curvature are

Kx = pr (8)

K- = y (9)

2K xy = 2K = y'x + xy + /R (10)

where Ix' y' and ¢ are the components of rotation about

the coordinate lines and about the normal to the surface. The

rotations in terms of the displacement are

= -W, (11)x x

= -W,y + V/R (12)

= (V, -U,y) (13)x y

5. . .,



In equations 5-13, W is the initial geometric imperfection

m and R is the radius of curvature. By knowing the middle

surface strains and curvatures and using the Kirchoff-Love

S. hypothesis, the corresponding strain at any point in the panel

can be found.

•"- Ex  E 0

L = K (14)

'--_ xy _x

Further, using the orthotropic stress-strain relations, the

stresses for any layer of a composite panel can be found [18].

: x x

orL:= H E(15)
T x k k xy _ k

or using the midsurface strains and curvatures

Y kCH o + Zk 7Q (16)

xy Y x

L_"_ _ k_k __ -1_ kxy_

where [Qk is the transformed reduced stiffness matrix and

is composed of

k= Q11 O12 16
;O; k

1 Q22 Q26 (17)

sym Q

6

°.: . .. .. . . . . . . . . .. ... . . . .. .
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in which

QC 4 + + 2Q 6 6 S2 C2 + Q22 (18)

2 2 4 4Q =(Q + Q -4Q )SC + Q (S + C  (19)12 11l 22 66 12

Q22 = O ll 4 + 2(Q1 2 + 2Q6 6 )S
2 C2 + Q22 C  (20)

QI6 = (QII - - 2Q6 6 )SC3 + (Q1 2 - Q22 + 2Q6 6 )S 3C (21)

= QII - Q - 2Q66 )SC
3 + (Q 2 - Q2 2 + 2Q6 6 )sc 3  (22)

2 2 4 4
.- S(23)

.66 = (QII - Q22- 2Q1 6 - 2Q6 6 )S C + Q6 6 ($  + C4 ) (23)

where S =sin 0 and C =cos 9

and

E1/(1 - (24)

Q- "1 2 v 2 1 ) = 2 1 EI/(I - 1 2 2 1 ) (25)

Q =E(26)22 E 2/(I - v 1 2v 2 1 )

Q66 =G (27)

The resultant laminate forces and moments can be found

from the appropriate stress components. (See Figure 1 for

sign notation for the forces and moments and Figure 2 for the

geometry of the laminate.)

7
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FIGURE 2: Geometry of an N Layered Laminate

The resultant forces and moments are defined as [17].

"x/ t/2 N x  - Zkt  t -yN - k

NYC1dz 0 zdz (29)

L. - t/2  
=1] k 1 

L i

k k-i

9z



-' . Where the N's are resultant force per unit length and the M's

are the resultant moment per unit length. If one substitutes

the stresses in, the resulting forces and moments become

N ~~: ]dz + 6 d (0
Nx? =ZkH1k xj IZ:Lxz (1

yy y
xy k=l k - - -

Mx_ k k-i L xy k- L _

M. k E k- Kx

[ "° However, recalling that the middle surface strains and

curvatures are not a function of Z, they can be removed from

.-" under the summation sign. The equations can then be inte-

::..'"' grated through the thickness of each composite layer to yield.

11 12 x x12 1

• ":1..,:12.16

S20

" d +Kzoz (1



is defined as

*Now
Aij - E - k Z - (34)

"- k=l i k

(B ij] is the coupling stiffness matrix and is
N i _ 22

(zj ( - z _1  (35)
Bj=k-1ij k k k 1)

Finally, [D I is the bending stiffness matrix which is

iJ

ij 3 (Q.) (Z3 3 (36)
k-I k

It may be stated that by using the finite element tech-

nique to find the displacement vector of the middle surface of

a panel using numerical differentiation to solve Sanders' equa-

tions the midsurface strains and curvatures can be calculated.

If one incorporates the midsurface strains and curvatures, the

strain at any point can be found by using the Kirchoff-Love
?1
'. hypothesis. Since the material properties, ply layup and

individual laminae thickness are known, the transformed reduced

stiffness matrix can be generated which is them used with the

corresponding strains to formulate the individual laminae

stresses and the corresponding resultant laminate forces and

moments. All the forces are now known in order to calculate

the potential energy and check for static equilibrium. All

that is needed is the displacement vector generated by finite

element techniques. Through the strain relationship, remember

that in solving this problem in the nonlinear case, the displace-

ment vector being established is determinc4 by a prior solution.

Thus, a nonlinear solution algorithm is needed.

11



Nonlinear Solution Algorithm Theory

* .- The solution technique used by STAGS in the nonlinear

analysis branch is a modified Newton-Raphson iteraction scheme

with a periodic updating of the stiffness matrix [13]. The

difference between the modified and full Newton-Raphson tech-

nique is in the modified technique, a previous stiffness

matrix is factored and its inverse is used instead of refor-

ming the stiffness matrix and inverting for every load

increment (load step). The stiffness matrix is then inverted

only when there is convergence difficulties, that is, the solu-

Stion is slow to converge or the solution diverges [18]. In

order to understand the solution technique, some equations

.-i *-will be developed.

The problem that will be dealt with is that of static

equilibrium, and the solution as previously stated, is

nonlinear. But since the basic problem is static equili-

brium, the sum of the applied, residual, and restoring force

.- vectors must equal zero at any load step, or the body is not

in equilibrium.

(M n)} = FXn)} 0 (37)

where (F(X n+)I is the vector sum of all forces corres-

ponding to the (Xn+l displacement vector for the n+l load

step. If one uses Taylors series expansion {F(X n+)} can be
12.
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- .
expressed as

0"{F (X)HO3

0 = {F(X }) + (AX) + H.O.T. (39)

n.- 6(Xn}

therefore

-6{F(X ))
(AX) = {F(Xn)) + H.O.T. (40)

-. 6{X n }
n

where H.O.T. represent higher order terms. However, noting

that the derivative of the force vector is the negative of the

nonlinear stiffness matrix [K(Xn)] one may write.

[K(X )] (AX) = {F(Xn ) + H.O.T. (41)

.n.n

Another way the force vector can be written is

{F(X n)} = {R} + H.O.T. (42)

where {R) is the vector of externally applied forces and the

H.O.T. are the forces generated by the strain energy and

residual forces. If one substitutes Equation (42) into

* Equation (41) and combines the H.O.T. the result becomes

* [K(Xn)] (AX) = {R) + H.O.T. (43)

or

S[K(Xn)l (AX) - (RI + H.O.T. = 0 = {F(X n+)) (44)

13



STAGS treats [((Xn  (AX) as a nonlinear operator L acting

on the displacements

0 = {F(Xn)) = L(X) - R + H.O.T. = {F(X ) (45)

Thus, the operator L is the first derivative of the strain

energy functional and the first derivative of L is the non-

linear stiffness matrix [K(Xn) ] [13]. The above equations

can be incorporated into a modified Newton-Raphson iteration

scheme, but first (referring to Figure 3) notice that for the

one dimensional case.

n (46 )

X (AXn

10 k

Residual
Forces

1"

I

xn  Xn+1 Disolacement Vector

--" FIGURE 3: Residual Forces Versus Assumed Displacement

14



Where (A} is the change of residual forces for an assumed

change in the displacement vector considering a given applied

external force vector {R}. {6X} vector can be found by

{AX){(x1 }(Xn} " ~nJ (47)

Recalling Equation (45)

H.O.T. =L(X n) -(R) (48)

and noting that the change in the residual forces (A} are the

higher order terms, it is possible to write

-(L(x) - {R})
{Xn+l -{X n}= (49)

n6l n

But, the [5/6XJ is the nonlinear stiffness matrix at that

given load step [K(Xn)] = L(Xn). Therefore, the modified

Newton-Raphson solution scheme can be written using a

previously factored matrix

(Xn+) = (Xn } + L-(Xm)-i ({R} - L(X n)) (50)

15



where L(Xmr is the previously factored stiffness matrix.

The nonlinear operator L can be removed and the solution

scheme in terms of the nonlinear stiffness matrix [K(Xn)],

becomes

{Xn = {X n } + [K(X )1-i ({RI - [K(X )MAX) (51)
n+1 n m n

The complete flow chart for the nonlinear solution algorithm

is shown in Figure 4. Therefore, by using finite element

techniques and formulating the nonlinear stiffness matrix

directly, along with using a modified Newton-Raphson iteration

scheme, the displacement vector can be found for a given load

vector knowing the previous displacement and load vectors. As

noted earlier, once the displacement vector is known, all the

strains, stresses and resultant forces can then be calculated.

16
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SART

I Begin New Load Step I
I Increment Load Vector I

Extrapolate Solution Vector (Xn+l)

Form Vector of Force Residuals
. [K(Xn )]{AX) - (R}

Form New Solution Vector

Xn = - [K(Xm) ([K(Xn )]{AX}- (R})

Force Residuals Within Tolerance OR
Number Iterations Greater Than 7 NO

YES

YES I Solution Converged I

NO

I Refactoring Allowed NO

YES

__________ Form (K(X U 1

I Allowed to Cut Load Step

NO 4YES

Solution"Terminates I .... I Recompute Load Vector {R}

FIGURE 4: Nonlinear Solution Algorithm

17
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MODELLING

i' Panel Properties

This thesis will model a graphite epoxy composite

panel that is 12 inches long, a chord length of 12 inches, and

a radius of curvature of 12 inches. The panels dimensions and

sign convention are shown in Figure 5. The panel has eight

.005 inch plies for a total panel thichkness of .04 inches.

Four different ply orientations will be used, [0, +45, -45,

90] s , [0, -45, +45, 90]s, [90, 45, -45, 0]s, and [90,

012s. Also, two sets of boundary conditions will be used.

In both sets of boundary conditions the top of the panel will

be clamped with only the u degree of freedom (DOF) free and

the bottom of the panel will be clamped with no DOF's. The

vertical sides of the panel will be simply supported with u,

v, and rotation about u free in one set of boundary conditions

and only u, and the rotation about u free in the second set of

boundary conditions. The panel will be loaded along the top

edge. The material properties of each ply are:

3 ~ 33E= 20.5 X 103 KSI E2 = 1.3 X 10 KSI GI2 = .75 X 103 KSI

V~ 12123
:'". 12 ff 335

* These are the same material properties used by M. L. Becker in

his paper (3] and N. R. Bauld, Jr. in his report [10].

b, J,-.18



z~ Rw

X, u

t

t =thickness =8 plies @0.005" =0.04"

R =radius =12"

C =width =chord length =12"

L =length =12"

* x,y,z = structural coordinate directions

9 = ply orientation

* .u,v,w =displacements

-. FIGURE 5: Panel Notation
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Element Selection

The current version of STAGS has 20 different elements

incorporated into it. There are 6 transition elements, 6 tri-

angular elements, and 8 quadrilateral elements. The trian-

gular and quadrilateral elements are divided into two types, a

membrane type and a plate type element. Since all the

membrane type elements have no out of plane DOF, they are not

a good choice for this study. In the plate type elements,

STAGS breaks the quadrilateral element down further into type

1 and type 2. The triangular plate elements and the type 2

.quadrilateral plate elements do not have normal rotations as a

DOF, therefore, they are not suitable for shell elements. The

type 1 plate element, called the QUAF elements are composed of

the 410 element and the 411 element, both of which have the

basic 6 DOF at each of the corner nodes (See Figure 6). In

*i addition to these basic 6 DOF, the QUAF 411 element has an

additional 8 DOF. There are 4 midside nodes that have a tan-

gential displacement DOF and at each of the corner nodes there

is an additional rotational DOF. This DOF is the rotation of

the plane that is defined at the intersection of the corres-

ponding sides of that node. The rotation was added specifi-

cally to the element to help alleviate the problem of trying

to model a curved surface with flat elements (16]. The shape

- functions used for the 411 element for inplane displacements

20
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FIGURE 6: Element DO'

are cubic parallel to the edge and quadratic perpendicular to

the edge and the bending shape functions are cubic in both

'-7 directions [15). Since a nonlinear collapse analysis will

require large deflections and moderately large rotations, the

QUAF 411 element will be the best element to use because of

the extra rotational DOE' at the corner node and translational

DOE' at the midside. However, there is one disadvantage to the

411 element. There is no suitable transition element in the

-library, therefore, a constant grid size is required.
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Grid Selection

The first panel to be modeled has a 2 inch by 2 inch

square hole located in the center of the panel. There are two

grid sizes with constant spacing that will be used to model

this panel. The first grid size will have 13 rows and columns

with 1 square inch elements. The second grid size to be used

will have 25 rows and columns with one half inch square

elements (.25 square inch element). The critical load for non-

linear collapse was completed for both grid sizes. The 13 by

13 grid size had a collapse load that is 12.5% higher than the

finer grid (See Figure 7). The largest difference was in the

computer time (CPU time) needed for completion and the number

of different load steps used in solving the problem. The

coarser grid completed 76 load steps to reach its collapse

load in only 20% of the CPU time of the finer grid. The finer

grid was stopped just prior to completion because the last

load step used 1500 CPU seconds to complete. The load versus

top edge displacement was plotted to see the differences in

the stiffness between the two grid sizes (See Figure 8).

Since both the grid signs were very close in stiffness to each

other with only a 12.5% difference in the collapse load, the

coarser grid size, one square inch elements, will be used thus

saving on CPU time and expense for the panels with cutouts.

22

"" " " : " i'"'" "' '" ." ' ' " . ". , . . . .' - -"
• '

, ,' . .



U _ . m - . - . -

GRID SELECTION
DATA SHEET

2 INCH by 2 INCH CUTOUT

13X13 Grid 25X25 Grid

NDOF 2100/1253 7840/5029

BANDWIDTH 98 192

CPU TIME 971 4852

COLLAPSE LOAD 215 191

NO. OF LOAD STEPS 76 22

IMPERFECTION GRID

.04 INCH IMPERFECTION
5HS by 5HS

15X15 Grid 25X25 Grid

NDOF 2835/1668 7975/5018

BANDWIDTH 117 198

CPU TIME 3466 5946

COLLAPSE LOAD 273.9 243.5

NO. OF LOAD STEPS 75 23

NOTE: The 15X15 grid was 4% higher on the bifurcation
load when compared to the finite difference load
M. L. Beckers Paper [3].

FIGURE 7: Grid Selection Data
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2 INCH by 2 INCH CUTOUT

* .' 300

LINEAR
251

1.3 xl3
215

200
TOP N 25x25

x 191

EDGE (lbs/in)

LOAD

100

0.0

0.0 .25 .50 .75 1.00 1.25

TOP EDGE DISPLACEMENT 100
u (inch)

FIGURE 8: Convergence Study for Cutout Panel
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For the panels with surface imperfections 2 different

grid sizes will be compared along with a linear analysis of an

imperfection free panel. A nonlinear collapse analysis was

run on a panel that had a .04 inch maximum amplitude imper-

fection at the center of the panel with 5 half sine waves

going in each direction. The 2 grid sizes used on this panel

with the imperfection was 15 by 15 grid and a 25 by 25 grid.

The coarser grid was 14.6% higher in collapse load than the

finer grid (See Figure 7). This time the CPU time difference

was not great. The coarse grid was run in 42.7% less time

than the finer mesh. An imperfection free panel was run to

find the linear bifurcation load using the 411 element and 15

by 15 mesh. The panel selected had the same size, shape, and

material properties as used by M. L. Becker in his paper [3).

His article used a finite difference method to calculate the

bifurcation load using a one half square inch mesh. The 15 by

15 grid with the 411 element computed a bifurcation load that

was 4% higher than the load that was calculated by Becker.

Therefore, a 15 by 15 grid is to be used in the imperfection

study which means the elements will be .857 inches square. In

addition, the convergence study was run with the minimum

imperfection wavelength of 2.4 inches. Therefore, a minimum

of 2.8 elements per half sine wave will have to be used to

insure accuracy of the grid size and because a fewer number r'

elements per half sine wave have not been checked for

convergence.
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DISCUSSION AND RESULTS

411 Element

The first result of this study was the discovery of

the 411 element. In order to make this project successful,

with a reasonable amount of computer cost involved considering

the nonlinear iterations, a good element was needed. A

compatability problem at the junction of elements will arise

when modelling a curved panel with flat elements since

adjacent elements do not lie in the same plane. The 411

element in STAGS has been developed specifically so that the

displacement compatability can be incorporated for flat

elements meeting at a nonzero angle [14]. This is

accomplished by adding the extra DOF Y at each corner (Figure

6). This angle (M) insures that each element's common corner

node has the same planar rotation as its common neighboring

element. This will permit the original iurved surface a

relatively smooth transition without any discontinuities

forming at the edge of the elements. In addition, this extra

DOF allows the curved surface to be modeled by larger elements

producing comparable accuracy to the same surface modeled by

smaller elements without the extra DOF. Therefore, the Y DOF

reduces the total computer time for accurate results since the

total number of DOF in a given problem can be made less.

I6
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Analytical Model Versus Experimental Study

The first study undertaken was to evaluate the finite

* element model for a panel which was experimentally tested

incorporating accurately measured surface imperfections.

Nelson R. Bauld, Jr. [10] completed such a study for the Air

Force Flight Dynamics Laboratory and the designated BCP

9824-A-31 AS panel was arbitrarily selected. In his study,

Bauld made 56 surface measurement on a 16 inch by 16 inch

graphite-epoxy panel with a 12 inch radius of curvature. The

measurements were made in a grid covering the surface with 10

columns across the panel and 9 rows down, with a measurement

made at each interior grid point. By looking at each row and

column of the grid, the number of half sine waves could be com-

* puted for that row or column, The average number of half sine

waves was determined for the row and column directions and the

surface imperfection. For analysis purposes, the surface

imperfection will be modelled by to the average number of half

sine waves circumferentially (3) and longitudinally (2). The

average magnitude of the 56 measured surface imperfections was

.00634 inches. The center of the panel was chosen as the ini-

tial point of maximum amplitude and the imperfection pattern

(3 half sine waves circumferentially and 2 half sine waves

longitudinally) was generated from this point with a maximum

imperfection amplitude of .00634 inches directed radially

outwards. The experimental panel, when tested, collapsed at a
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total load (Nx) of 290.1 lbs/in with a total displacement of

the top edge of .021 inches. Using STAGS and the imperfection

X model referred to previously, the nonlinear collapse load

(Nx ) was 365.1 lbs/in with a total top edge displacement ofx

.019 inches. Figure 9 shows both the experimental and analy-

tical panels load versus top edge displacement curves. The

STAGS solution predicted a 25.8% higher collapse load and was

9.5% lower on the top edge displacement. This demonstrated

that the model, using STAGS, was stiffer than the actual

tested panel and was expected. Overall though the author

believes the model showed very good agreement in both the

collapse load and the total top edge displacement. With this

agreement, the model was said to be acceptable for use in

further studies.

In evaluating the results of this nonlinear analysis,

two items appear to show the greatest amount of nonlinearity.

This was the radial displacement and the moment resultant

about the y axis (Ms). The radial displacements were found

to follow the shape of the initial imperfection. At the lower

load level of 221 lbs/in (60% of the collapse load) radial

outward displacements showed twice the radial inward displace-

ments (Figure 10). These radial displacements are the dis-

placement of the midsurface with respect to the initial imper-

fection. As the load is increased to 331 lbs/in (91% of the

collapse load) the radial inward displacements increased at a

08 greater rate than the outward displacements so that they equal

28
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* FIGURE 9: Load Versus Top Edge Displacement

On BCP 9824-A-31-AS Pane.
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e

Experimental Panel

Ni = 221 lbs/in

Positive Contour Levels Are Radial Outward

Maximum Displacement = .0056 inch

Displacement Contours Are In 10ths of Maximum Displacement

FIGURE 10: W Component Displacement Contours
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each other (Figure 11). Just prior to collapse, at 363.5

lbs/in loading (99.5% of the collapse load), the panel loses

the symmetry in radial displacements that it showed in earlier

load steps (Figure 12). The radial inward displacements grew

at a greater rate became larger than the radial outward

displacements. This increase in the radial displacement is

caused by the changes in the moment resultants about the y

axis, Mx . As can be observed in Figure 13, as the early

load levels are increased, the Mx resultant across the

center of the panel is symmetric and increases symmetrically.

At an 81 lbs/in load level, the Mx resultant has almost the

same magnitude in the positive direction at the center of the

panel as it has in the negative direction at the and

chord lengths. The positive Mx corresponds to the radial

outward displacements and negative Mx likewise corresponds

to the inward radial displacements. As the load level is

increased to 281 lbs/in, the positive Mx only doubles its

magnitude while the negative Mx increases to 600% of its

original value. This building of the negative Mx faster

than the positive accounts for the larger magnitude of change

in the negative radial displacements over the positive. As

the load level is increased up to the collapse load, the Mx

resultant loses its symmetry and the overall shape of the

moment curve changes. The moment function near the center of

the panel, where Mx was increasing positively, now decreases

in magnitude and has a very slight negative value at collapse.
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Experimental Panel

Nx = 331 lbs/in

Positive Contour Levels Are Radial Outward

Maximum Displacement = .0056 inch

Displacement Contours Are In 10ths of Maximum Displacement

1It

10

p ' ,

FIGURE 11: W Component Displacement Contours
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Experimental Panel

Nx - 363.5 lbs/in

Positive Contour Levels Are Radial Outward

Maximum Displacement = .0056 inch

Displacement Contours Are In 10ths of Maximum Displacement

I-.

FIGURE 12: W Component Displacement Contours
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Plotted Load Levels Are:

81 lbs/in
181 lbs/in
281 lbs/in
365.1 lbs/in

Load Levels Increase Away From Horizontal Axis
Radial Displacement 8 Inches From Top of Panel

(0

Cr

Cr (inches from left edge)

LO
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o rThis unsymmetric shape of the M profile corresponds withx
the unsymmetric radial displacements. All of this can be tied

together because of the effect the initial surface imper-

fection has on the various curvatures of the panel. Mx is a

function of K x and Ky. When the surface imperfection is

added, the values of K and K are no longer constant asx y

they were in the perfect panel. Since the initial surface

imperfection is small and symmetric, the initial changes in

curvature will be small and symmetric. Now as the load level

is increased, the M resultant will build according to the

initial imperfection shape, and this will cause the radial

displacements. These radial displacements will likewise cause

a change in curvature. A radially inward directed displace-

03 ment has a greater effect on the change of curvature than

would an equal radial outward displacement. This change in

the curvatures cause the negative Mx to grow faster than the

positive Mx at the higher load levels because the radial

displacements now have a larger affect than the initial sur-

face imperfection. Therefore, the initial surface imperfec-

tions will influence the function Mx as it builds according

to the shape of the imperfection. This is the reason why the

displacement pattern in the panel follows the initial shape of

the imperfection. As the Mx nonlinearly builds, this causes

the radial displacements to build which further causes a

change in curvature. This change in curvature has a greater

effect when the displacement is radially inwards than
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outwards. Therefore, the Mx grows at an increasing rate

when the displacement is radically inwards along with the

radial displacement itself. This phenomena continues until

the panel reaches the collapse load and is no longer able to

absorb any more potential energy. Any additional load

increases the potential energy in the panel and the panel is

not capable of absorbing it and stay in the symmetric shape.

Therefore, the panel then redistributes the potential energy

and through the larger rotations the panel loses its symmetric

shape.

In conclusion to the experimental versus the analy-

tical analysis, it can be seen that the model being used does

a good job in predicting the collapse load and top edge dis-

i 7 placements of a panel with surface imperfections. As the load

level is increased the radial displacements of the panel will

follow the initial shape of the surface imperfection. These

radial displacements show a great deal of nonlinearity as the

load level is increased and corresponds to the nonlinearity of

the M resultant and the change in curvatures. This case

study also demonstrates that the model and STAGS are accept-

able to continue further studies of different imperfections

analytically with good accuracy.
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Analytical Imperfection Study

After verifying that the surface imperfection model

correlated well with an experimentally tested panel, interest

turned to the effects that the number of surface imperfections

with same maximum amplitude, have on a cylindrical composite

panel from the point of view of the collapse load and

* displacement patterns. The panel size and notation are the

same as shown in Figure 5. The 411 element has been used with

a 15 by 15 grid (196 total elements per panel). Two ply

layups have been analyzed, the [0, +45, -45, 90] s and [90,

012s. The maximum amplitude of the imperfection was chosen

to be equal to the thickness of the panel (.04 inch). The

point of origin for the generation of the surface imperfection

will be the center of the panel with the maximum amplitude

being radially outward (a positive w displacement). Five

different imperfection patterns were chosen for each panel to

Ik be considered and are shown in Table 1.

Table 1

Imperfection Patterns

Number of Number of Ply Layup
Circumferential Longitudinal (0, 90] or

* Sine Waves I Sine Waves [0, +45, -i, 90]
or Both s

* 2 2 Both
3 3 Both
5 5 Both
2 3 Both
4 4 [90, 0 1

5 2 (0, +45, -45, 90Js
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-The boundary conditions on all the panels are: top edge

clamped with only u free, bottom edge clamped, both sides are

simply supported with u, v, and the rotation about u free. A

nonlinear collapse analysis was accomplished for each panel

using STAGS Cl. The different results follow.

Figures 14 and 15 are graphs of the relative tope edge

displacement versus relative loads for the two sets of panels.

The load and displacement values were normalized relative to

the linear bifurcation load and top edge displacement of an

imperfection free panel with the same ply layup. The numbers

on the curves refer to the imperfection pattern. For example,

curve 52 corresponds to the imperfection pattern of 5 half

sine waves circumferentially with 2 half sine waves longitu-

dinally. In comparing the two figures, it can be seen that

the [90, 0] 2s panel showed a greater amount of nonlinearity

in the top edge displacement than the [0, +45, -45, 90]

panels. The total number of surface imperfections each panel

had is the product of the number of circumferential half sine

waves and longitudinal half sine waves. As the number of

imperfections increased in both panels, the collapse load

decreased until there was a total of 9 surface imperfections.

After this, increasing the number of imperfections did not

necessarily increase the stiffness in the panel, but the load

bearing capability of the panel increased. One of the largest

differences noticed between the panels is that the [0, +45,

-45, 90] s panel is more imperfection sensitive than the-s
38
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* Number jSine waves
Circumference Longitudinal

22 2 2
23 2 3
33 3 3
52 5 2
55 5 5

O Bi furcation
/Max Load -478.1 lbs/in

[O~+4~-459O] ~Max Displacement -.00595 in

o 5

-Jo

W 52

22
23

33

7

etc0 0.29 0 57 0. 66 lA 1'. A3 171 2CCo
RELRTIVE 015PLRCEMEN T

FIGURE 14: Relative Load Versus Relative Displacement

Note: The 23 curve overlays the 52 curve and
terminates at .338 relative displacement
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Number I Sine Waves
______Circumference Longitudinal

22 2 2
23 2 3
33 3 3
44 4 4
55 5 5

o QLinear Bifurcation
Max Load -316.219 lbs/in1 9012S /Max Displacement -.00865 in

/
/

/ 55

22

22 "44

2

Jj /

33

- /

/ / ,/

FIUR 15 Reltiv LodVru eaieDslcmn

4 , 40

r / 7/.
/'

Di '

-

-r.. -'ar.

:| FIGURE 15: Relative Load Versus Relative Displacement
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[90, 0 12s For example the 22 imperfection in the [0, +45,

-45, 90] panel can only handle 34% of the bifurcation load

(PCr = 478 lbs/in), however with the same imperfection the

[90, 0]2S panel can withstand 63% of its bifurcation load

(PC-r = 316 lbs/in). While the bifurcation loads of the two

panels will show that the [0, +45, -45, 90] s panel can

withstand the greater load, 478 lbs/in to 316 lbs/in for the

[90, 012S panel, the [90, 01 panel will withstand a larger

load with the same imperfection, 198 lbs/in versus 164 lbs/in

for the 22 imperfection.

In both sets of panels the deformation pattern, as the

load level increased, followed that of the initial surface

imperfection. Figures 16-18 show the [90, 01 panel with

3X3 imperfection pattern at three different load steps and

Figures 19-21 show a 5X5 imperfection pattern at 3 different

load steps on a [0, +45, -45, 90] s panel. In viewing the

six figures it is easy to see the initial shape of the imper-

fection. As the load is increased the initial magnitude of

the imperfection increases with the greatest amount of

increase in the radial inward direction. The effect is even

more dynamic than it seems since the contour plots are plots

of the w displacement relative to the initial imperfected

surface. Therefore, the total displacement of the midsurface

from the "perfect" panel, is the amount of displacement shown

plus any initial imprefectit of the panel at that point. To

get the total displacement of the peaks and valleys in the
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figures add .04 inch, which is the initial displacement of the

-. " imperfection at the start, to the magnitude shown in the

figures. As was seen in the experimental study, the radial

inwards displacements are about twice the magnitude of the

outward displacements. As the load level is increased, the

inward displacements increase at twice the rate as the outward

displacements, thereby keeping a relative magnitude of two

between them. These six plots are just examples of all the

panels studied. The same displacement patterns were observed

in all ten analytically observed panels, that is, the

displacement pattern follows that of the initial surface

imperfection and the radial inward displacement is twice the

outward displacement.
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[90, 0J2 s

Nx = 86 lbs/in

Positive Contour Levels Are Radial Outward

Maximum Displacement = .023 inch

Displacement Contours In 10ths of Maximum Displacement

-. ...--

i7 \ .7zT

"I -'* .I - --

i- /

FIGURE 16: W Component Displacement Contours
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90,

[9,0 2s

-Nx = 128.5 lbs/in

Positive Contour Levels Are Radial outward

Maximum Displacement =.049 inch

Displacement Contours In 10 th s of Maximum Displacement

/4 4z /6%-a.

.7 .

*FIGURE 17: W Component Displacement Contours
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[90, 0 2 s

N= 154.4 lbs/in

Positive Contour Levels Are Radial Outward

Maximum Displacement = .076 inch

Displacement Contours In 10ths of Maximum Displacement

. . .

_" //// , '//

_'- k G

FIGURE 18: W Component Displacement Contours
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(0, +45, -45, 901 s

Nx = 211 lbs/in

Positive Contour Levels Are Radial Outward

Maximum Displacement = .031 inch

Displacement Contours In 10ths of Maximum Displacement

2IC

•FIGURE 19: W Component Displacement Contours
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[0, +45, -45, 901S

Nx = 303.5 lbs/in

Positive Contour Levels Are Radial Outward

Maximum Displacement = .0525 inch

Displacement Contours In 10ths of Maximum Displacement

2

'1iFIGURE 20: W Component Displacement Contours
a. . &47
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[0, +45, -45, 901 s

NX = 329.6 lbs/in

Positive Contour Levels Are Radial Outward

Maximum Displacement = .0599 inch

Displacement Contours In 10ths of Maximum Displacement

L

b "2"

[ 1 FIGURE 21". W Component Displacement Contours
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* i. In examination of the displacement contour plots, it

was noted that the radial inward displacement showed a great

amount of nonlinearity. The point of maximum inward radial

displacement was chosen and its magnitude was plotted against

the top edge load intensity (N ) for each set of panels

(Figure 22-23). In viewing these figures, one notices that

there seems to be a maximum radial displacement in each set of

panels occuring at the collapse load.

In Figure 22, the average maximum radial displacement

for the [90, 012S set of panels is .068 inches. The average

is the sum of the maximum displacement divided by the number

of curves. In the five panels considered, the 55 panel had

the smallest maximum radial displacement (78% of the average)

9while the 44 panel had the largest maximum radial displacement

(131% of the average). Figure 23 indicates a narrow band of

maximum displacement difference for the [0, +45, -45, 90] s

panels. The average maximum radial displacement is .056 inch.

All of the panels investigated in this series were within 8%

of the average when the panel collapsed. One realizes that the

Mx and M moment resultants are functions of the radial
x y

displacements through the change of curvature and thus they

are analyzed next.
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Average Radial Displacement .0684 inch

K[ 90, 01 2s
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Average Radial Displacement .056 inch

[0, +45, -45, 90ois

0

0
CO-

0

CD

CD

N

X N.J 33

CD
CO

C33

.00 G 0'.02 0 .04 0.06 0 .08 C'.IG C.12
MR< RROIRL OISPLRCEMENT

(i nch)

FIGURE 23: Maximum Radial Displacement Versus Top Edge Load
[0, +45, -45, 90] Panel
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Figures 24 and 25 are plots of the maximum M and

M y resultant for the [0, +45, -45, 90] s panels. The

points of maximum Mx and M were the same as the point
x y

where the maximum radial displacement occurred. Figures 26

and 27 are the companion figures for the (90, 0 12s set of

panels. In viewing the figures, one can see a great amount of

nonlinearity appearing, as was demonstrated in the radial

displacement. One of the interesting things noted about these

figures is that in the [0, +45, -45, 90] set of panels~s

(Figure 24 and 25) the M resultant is of a larger magnitude
X

than the My resultant and the opposite is true in the [90,

0 12s set of panels. This can be explained by the entries in

the Dij bending stiffness (See Appendix B for complete

- array). For the [90, 012s panels D22 is almost twice as

large as D while in the [0, + 45, 901S panels DII

" :.'  is over three times as large as D22 • Bearing this in mind

and examining Figures 24 through 27, for the [0, ± 45,

90] panels, one can see that the Mx resultant is greater

than the M resultant, because D is greater than D22.
y 2

While on the other hand, the [90, 0 12s' the opposite is

true. One can also see a larger difference in the magnitudes

of Mx and M in the [0, ± 45, 90] s panels. This
y

directly corresponds to the differences in D and D22 in

the different sets of panels.
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[0, +45, -45, 90]

0s

CD

* to-

55

C)

C:)

CC

c

22 23

~C)
CD
1CD

N 33
x

(i b s/ i n)

CD

CD

C~.G 4G 2.00 3.00 4.00 '. cc 6.cc
MRXIMUM MX RESULTRNT

( in- lbs)

OF FIGURE 24: Maximum M Resultant Versus Top Edge Loadx

53



to, +45, -45, 90]
S

C:)

55
CD
C

* C)

C0

CD

co.

C)

CDL

Cl

Cb Gho !.Go 2.00 3.00 4 .00o .0Go 6.M0
MRXIMUM. l RESULTRNT

X1f iS)

* FIGURE 25: Maximum M Resultant Versus Top Edge Load
y
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[90, 0 2s

C)

C)

CD
C)
C:)

55

C)

CD

CD

CJ

D

C

CD

N

CD

to

'1J'.0 c .00 2.00O 3 .00 4.00 cc0 6.00
MRXIMUM1 MX RESULTqNT( in- lbs
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FIGURE 26: Maximum M~ Resultant Versus Top Edge Load
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[0, +45, -45, 90]
S

0_CD

1 2 4 3 5 6

3. M Linear
CD x

CD

D 42. M Linear

M 2. m LinearCD y
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As a comparison of the effects of the nonlinear

analysis on the moment resultants versus the linear analysis,

Figure 28 was plotted. The (0, +45, -45, 90] 33 panel was
5

chosen and the three moment resultant Mxy, Mx, and M
xy X y

were plotted in both the linear and nonlinear analysis. At

the collapse load of 116.3 lbs/in the differences are shown in

Table 2.

Table 2

Linear Versus Nonlinear Comparison
at 116.3 lbs/in

Moment Linear Nonlinear % change
, Resultant Value Value Nonlinear to linear

M .073 .481 278
xy

M 744 2.0 268

. M .426 1.01 237

The effects of the nonlinear analysis on the resultant moment

can be readily seen in Figure 28 and Table 2. This nonlin-

earity within the moment functions is a by product of any

change in curvature created by the radial displacements nonlin-

earity as discussed previously. This curvature effect is very

pronounced as the collapse load is approached and thus the

maximum moment resultants become larger and more nonlinear as

observed in Figures 27 and 28. In order to reinforce the

nonlinear characteristics of moment through the curvature, one

may observe in comparing Figures 24 through 28 with Figures 14

and 15 that the nonlinear characteristics of the moments is
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more apparent than the nonlinear characteristics of the top

1W Wedge displacement curve.

Another item that was examined with the moment result-

ants was how they varied across the center of the panel with

increasing load steps. The moment resultant for one

panel in each set is illustrated. Figure 29 is the plot of

* - the [0, +45, -45, 90] 55 panel and Figure 30 is [90,

012s panel. These two panels are representative examples of

the two sets, since each panel in the set had the some charac-

teristics. When comparing these two figures with the corre-

sponding displacement contour plots (Figures 16-21) it becomes

readily apparent that the maximum moments correspond with the

maximum radial displacement and the negative moment resultants

are much greater than the positive one. In viewing Figures 29

and 30, one can see that the shape of the moment resultant

curve correspond to the shape of the initial imperfection about

the midsurface. As the load is increased this symmetry is

lost, and the negative moment resultants increases rapidly.

Also, the greatest gradient in the moment curves correspond to

the steep gradients in the displacement contours. This is due

to the fact the moments are a function of the curvature and

the curvature is a function of the radial displacements. Where

there is a steep gradient, that is a rapidly changing displace-

ment, there will also correspond a steep gradient in the

change of the curvature. This steep gradient in the change of

the curvature causes the change in the moment resultant.
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(90, 01 s

33 Panel

Load Levels Increase Away From Horizontal Axis

Load Levels (lbs/in) are 61, 103.5, 128.5, 154.4
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One final item was considered when testing the surface

imperfections on the panels. It was noted in some of the

research that when a perfect panel reaches its collapse load,

the panel will deform into the shape of its eigenfunction

[19]. Recalling that the radial displacements followed the

initial surface imperfection, it was reasonable to believe

that the panel with a surface imperfection of the eigenvector

would have the lowest collapse loads. A linear bifurication

was completed on both (90, 012s and (0, +45, -45, 901

-[ .panels and the w component of the eigenvector plotted using

contour levels to visualize the shape of the eigenvector

- (Figures 31 and 32). In viewing the two figures, one can see

that the (90, 0]2s panel has an eigenvector in the shape of

4 half sine waves in both directions and is symmetric about

the center of the panel. In Figure 32, considering the [0,

+45, 90] panel the eigenvector shape is approximated

by 5 half sine waves across the panel and two down. These two

imperfection patterns were tested to see if this would give

the lowest collapse load. As already shown in Figures 14 and

15, the collapse load for these two test cases was not the

lowest of the cases tested, which came as a surprise.

All of these different observations made on these

panels can be tied together by looking at the energy a panel

can absorb prior to collapse. When one looks at a perfect

panel, the only deformation that occurs is the end shorting.

6 - In addition, since there are no imperfections present, the
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surface does not have significant radial displacement until

the collapse load occurs. Therefore, the panel is able to

absorb energy equally throughout the panel and there are no

localized areas where great amounts of energy are accumulated.

Thus, the panel can absorb a great amount of energy and has a

high collapse load.

When surface imperfections are added to the panel,

these localized areas will become "energy hot spots". That

is, as the panel is loaded into compression the moment result-

ants will build in the areas of the imperfection faster than

in the other areas due to the changing radial displacement

pattern. Since the energy is a direct function of the moment

and curvature as well as the membrane force and inplane

displacements the imperfection sites become localized areas of

higher concentrations of stored energy, that is "energy hot

spots". The number of imperfections therefore will dictate

thm number of "energy hot spots".

With large surface imperfections, absorbed energy will

*be spread over a larger area than if the imperfection were

smaller. This explains why the 22 panels were able to have a

higher load bearing capability than the 23 and 33 panels. All

these panels had relatively large surface imperfections. As

the area of the surface imperfection decreased, that area was

* - not able to absorb as much energy and the panel would

collapse. Keep in mind that the magnitude of the imperfection

was the same in all cases.
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The question then arises, why was the 33 panels the

weakest instead of the 55 panels. As the number of imperfec-

tion become greater, and the area they covered become smaller

they begin to interact. Each imperfection still absorbs energy,

but when the shape of the imperfection is looked at closely the

answer is revealed. For example, take two surface imperfections

next to each other with their amplitudes opposite one another.

As the panel is loaded, each imperfection tries to dis-

place in the shape of the individual imperfection. Therefore,

as they both try to displace in opposite directions they begin

to react with one another and store the energy internal rather

then being able to displace. Therefore, the absorbed energy is

now being absorbed by a greater area of the whole panel, much

like the perfect panel. There are still localized "hot spots of

energy", but the difference in magnitude around the panel is

-.2: closer to being uniform, rather than just a few areas. In recap-

ping what happens, as surface imperfections are added to a

panel, localized areas of absorbed energy appear and the panel

will not be able to absorb as much as a perfect panel, therefore,

the collapse load is smaller. As the number of imperfections

*-. increase, the "energy hot spots" begin to react and start to

keep the absorbed energy pretty well constant throughout the

panel, therefore, the panel starts to gain some of its strength

back. A few large imperfections will weaken a panel while many

small imperfections will give some of its initial strength back.

The last idea is very much like the fQlded plate concept where

the ridges stiffen the plate.
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Analytical Study of Panels With Cutouts

In order to understand the effect that a true geome-

tric imperfection has on a composite panel, a study of the

effect a discontinuity has on a panel has been carried out.

The geometric discontinuity will be a cutout in the center of

the panel. This portion of the study, just like the surface

imperfections, will be interested in the collapse load,

displacement pattern in the radial direction, and moment

resultants. The panel size and notation are the same as used

previously and shown in Figure 5. The 411 element has been

incorporated into the finite element model with a 13 by 13

grid. Three different ply layups with two different size

cutouts have been analyzed and are shown in Table 3.

Table 3

Ply Layup and Cutout Size

Ply Cutout Size
Layup (inches)

[0, +45, -45, 90] s  2X2 and 4X4

[0, -45, +45, 90] s  2X2 and 4X4

[90, +45, -45, 01 2X2

The 2 inch by 2 inch cutout removed 2.78% of the panels total

area and the 4 inch by 4 inch cutout removed 11.1% of the

total area.
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The boundary conditions for all five of the panels

evaluated in Table 3 are the same as used on the panels with

surface imperfections. That is u free on top, bottom of the

panel clamped with no free DOFs and the sides of the panel u,

v, and the rotation about u are free. One other panel was

examined with a different boundary condition. A [0, +45, -45,

90] panel with a 2 inch by 2 inch cutout was analyzed with
s

the same boundary conditions on the top and bottom of the

panel and on the vertical sides only u and the rotation about

u was free. A nonlinear collapse analysis was performed in

all six of the different panels the following results were

observed.

A graph of the top edge load versus the top edge

displacement is shown in Figure 33 for the panels with

cutouts. As can be seen in the graph, the cutouts affect the

load bearing capability of the panel. When considering just

the linear bifurcation of the panels, it can be seen that the

presence of a cutout greatly reduces the load bearing capa-

bility of the panel and its stiffness. The linear bifurcation

of the panels shown in Figure 33 is for a [0, +45, -45, 901 s

ply layup with the indicated cutout. By changing the orienta-

tion of the 45 degree plies with each other, one did not find

a change in the bifurcation load or top edge displacement.

Thus, the lines are the plots of the linear bifurcation for

both the [0, +45, -45, 01 and 10, -45, +45, 90] panels

with their respective cutouts. The linear bifurcation of the
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1 [0, +45, -45, 90]1 Panels
[90,+45 -45 0]Panel

Cutout Ply Collapse Linear
Size Layup Load Bifurcation
2X2 (0, +45, -45, 90]1 215.9 252.14
2X2 [0, -45, +45, 91215.9 252.14
2X2 [90, +45, -45,0 223.6 205.0
4X4 [0, +45, -45 901 s 131.2 113.2
4X4 [0, -45, +45, 91s131.2 113.2
4X4 [90, +45, -45,?0 74.32

0s

0

0
0-
U,

Linear
Bi furcati
487 ibs! in

No Cutout

CC
HDM

Linear Bifurcation
.0 Oc,~2x2 Cutout

LLJ on-Linear *Colla~se

z X -2x2 Cutout

Linear Bifurcation -Non-Linear
4x4 u- OutCol lause

4x4 C-utout

'b. c 0.03 0 c S C'.0 0e.10 C.'3 C
C P EDGE 015PLPCEMENT '0

u (inches)

FIGURE 33: Top Edge Load Versus Top Edge Displacements
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[90, +45, -45, 0]s panels has the same axial stiffness as

- the [0, +45, -45, 90] s panels. However, their load bearing

capability is reduced. Because the axial stiffness is the

same for the two panels, the plots of the top edge load versus

the top edge displacement overlay one another. One notices

that the panels with the two inch by two inch cutouts have the

* .bifurcation load is reduced to 81% of the [0, +45, -45, 90]

panels bifurcation load (252 lbs/in to 205 lbs/in. See hash

mark on a linear bifurcation 2X2 cutout plot in Figure 33).

The 4 inch by 4 inch cutout panel had its bifurcation load

reduced to 65% of the [0, +45, -45, 901 s panels bifurcation

load (113.2 lbs/in to 74.3 lbs/in). In other words, it can be

seen from the linear bifurcation that the different ply layup

did not affect the axial stiffness of the panel. However, the

load bearing capability of the panel with the zero degree

outside ply has the largest bifurcation load. This is because

of the change in the bending stiffness array (See Appendix B).

When the nonlinear collapse analysis was performed, a

couple of interesting things were noticed about the load bear-

ing capability of the panels and their top edge displacements.

The panels with the three different ply layups and 4 square

inch cutouts all had the same top edge displacement, at their

* respective collapse loads, of .0103 inch. The collapse load

for the [0, +45, -45, 90] s panel was exactly the same as the

[0, -45, +45, 901 s panel at a load of 215.9 lbs/in. The

S collapse load for the [90, +45, -45, 0]s panel was a little
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higher (3.4%) at 223.6 lbs/in. Since they are so close to one

another they are represented in Figure 33 as the same curve

for the nonlinear analysis. Referring to Figure 33, one can

see that the zero degree outside ply pane'.s had a collapse

lower than the linear bifurcation load. However, the panel

with the 900 outside ply had a collapse load higher than its

respective linear bifurcation. The collapse load for the 2

inch by 2 inch cutout panel in the nonlinear analysi0; falls

in between the two different bifurcation loads and top edge

displacements (See Figure 33).

This item can be explained by considering the stiff-

ness matrix for the panels and the effects the small cutout

has on a nonlinear collapse analysis. In the straight linear

bifurcation the panels had the same axial stiffness and

beck Ee of the bending stiffness the panels with the zero

degree outside plies were able to withstand the greater load.

When the nonlinear collapse analysis was done, the radial

displacements and the nonlinearity of the cutout comes into

play. Since the load is applied in the zero degree direction

(axial compression) the cutting of this ply orientation by the

cutout produces a reduced bending stiffness. Therefore, the

panel with the zero degree outside plies will allow the panel

*O to displace radially more than the panels with the 900

outside plies. Taking this into account, the panels with the

900 outside plies will have a higher collapse load (be able

*to absorb more energy) than to zero degree outside ply panels.
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Therefore, when compared to the linear bifurcation analysis,

the load bearing capability for the 900 outside ply panels

*. will increase in the nonlinear collapse analysis, and likewise,

* the 00 outside panels will have the opposite effect. This is

the reason why the nonlinear collapse analysis of the 2 inch

by 2 inch cutout is very close to the same for both ply orien-

tations and why it falls in between the two linear bifurcations.

In looking at the effect a 4 inch by 4 inch cutout had

on the panels, one will notice a different effect than the 2

inch by 2 inch cutout had (Figure 33). The nonlinear collapse

load of the 4 inch by 4 inch cutout was higher than both of

the different bifurcation loads. This is because in the non-

linear collapse analysis the radial displacements along the

Q2 cutout edges will play a greater part in absorbing energy than

the 2 inch by 2 inch cutout and the linear bifurcation of the

4 inch by 4 inch cutout panel. By having the larger cutout,

radial displacements along the cutout edges are less con-

K strained in the radial direction and will allow greater amount

i.-of bending. Therefore, the panel will be able to absorb more

energy (higher collapse load) than the linear bifurcation

value and will have a larger top edge displacements.

Briefly in reviewing, the 2 inch by 2 inch cutout non-

linear analysis does not effect the panels load bearing capabi-

lity that greatly compared to the linear cutout analysis

because of the small amount of area removed, and the length of

the cutouts edges. This is due to the fact that the radial
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, -* displacements along the cutouts edges are not as large as

those of a panel with a larger cutout. Therefore, there is

less bending in the panel for the smaller cutout and its non-

linear collapse load will be close to the bifurcation load.

As the cutout gets larger in size, the radial displacements

along the edge of the cutout will play a greater effect in the

° .nonlinear analysis and thus will have a larger moment effect.

One will notice when an area is removed from panel the overall

bending stiffness is reduced in the area of the cutout. Since

the general resistance in a panel is axial, a reduction in the

bending stiffness makes the overall axial resistance less.

Therefore, the larger cutout will have a greater top edge

displacement when compared to the linear bifurcation and the

collapse load will be higher because of the greater moment due

to the larger radial displacements. However, the presence of

a cutout will greatly reduce the strength of a panel when

compared to the uncut panel (See Figure 33).

! "After seeing the effect that the radial displacements

had in the nonlinear collapse of the cutout panels, they were

studied further. Figures 34 through 38 are the w component

displacement contours of the panels with a 2 inch by 2 inch

cutout (small cutout). In examining these figures, one can

Sg see a difference in the displacement pattern then that exper-

ienced by isotropic panels. That is, at collapse the symmetry

is lost.
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Load Level 81 lbs/in

Maximum Displacement = .0086 inch

Ply Layup [0, +45, -45, 90]

Kss
If's

* FIGURE 34: W Component Displacement Contours
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S-.Load Level 215.9 lbs/in

Maximum Displacement = .037 inch

Ply Layup [0, +45, -45, 901s

Contour Levels Are In 10 ths of Maximum Displacement

/e

-86N. -i' -4

"\ v

* ,FIGURE 35: W Component Displacement Contours

75



Load Level 215.9 lbs/in

maximum Displacement = .037 inch

Ply Layup [0, -45, +45, 90]~

Contour Levels Are In 10th of Maximum Displacement
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Load Level 71 lbs/in

Maximum Displacement = .0040 inch

Ply Layup [90, +45, -45, 0] s

ths
Contour Levels Are In 10 of Maximum Displacement

p\

I, / , j /

T K // f ,"

,K I

FIGURE 37: W Component Displacement Contours
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" Load Level 223.6 lbs/in

-. Maximum Displacement = .0157 inch

Ply Layup [90, +45, -45, 0]s

Contour Levels Are In 10 ths of Maximum Displacement

-~~~~ ~ ...........i ,"

/.- ... .....

787

I //' I

-:\\ c7,,

°'.-. FIGURE 38: W Component Displacement Contours
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L* %! Figure 34 shows that for the lower load step of 81

lbs/in for the [0, +45, -45, 90] s ply layup the displacement

pattern is relatively symmetric about the center of the

cutouts. This symmetry is due to the energy absorption by the

axial stiffness of the panel and very little bending. The

extensional (axial) stiffness matrix is symmetric in the Al1

and A22 terms (See Appendix B). This pattern of symmetry is

again shown in Figure 37 at 71 lbs/in for the [90, +45, -45,

01 ply layup. This is the displacement pattern that was
5

expected and is the same type of symmetry shown in displace-

ment patterns of isotropic panels and shells (5, 12].

. However, as the load is increased this symmetric displacement

field about the center of the cutouts edges is lost when the

collapse load is reached. This loss of symmetry is due to the

larger radial displacements, hence the larger moments. With

" the greater radial displacements, the bending stiffness matrix

has a greater effect. Therefore, the D and D22 will

have an effect on the displacement pattern. Since there is a

large difference between them, the symmetry in the

displacement field is lost.

Figure 35 shows the radial displacement contour of the

[0, +45, -45, 90] s panel at the collapse load of 215.3

lbs/in. One will notice that there is a trough of large

radial inward displacements from the upper left corner of the

cutout to the lower right. Figure 36 represents the is

displacement contours for the [0, -45, +45, 90] panel and
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is almost the mirror image of Figure 35. Both of these panels

have the same collapse load and maximum radial displacements.

Figure 38 (considering a [90, +45, -45, 0] panel) on the

other hand does not show as great a change from the symmetric

displacement pattern as the two previous panels did. This

stands to reason since the D term in the [90, +45, -45,

01s panel is larger than the corresponding value in the [0,

+45, -45, 90] s panel. The larger D22 term will absorb the

same energy with less bending involved. With the smaller

bending, the displacement pattern will be more symmetric. One

will notice however, that also in Figure 38 there is still a

trough or radial inward displacements that run from just right

of center of the top edge of the cutout to slightly left of

NJ center of the bottom edge of the cutout. These displacement

troughs and loss of symmetry are better shown on radial

displacement profiles for different load levels across the

panel at several distances from the top of the panel.

The [0, -45, +45, 90] panel with a 2 inch by 2 inch

cutout was selected to show this. Figures 39 through 44 are

the plots of the radial displacement versus load level for a

specific circumferential arc across the panel at different

locations from the top of the panel. Figure 39 is the plot

for 2 inches from the top of the panel at load levels 56

lbs/in, 106 lbs/in, 156 lbs/in, and 215.9 lbs/in. Likewise,

Figures 40 through 44 are for the same load levels at the dis-

Utance from the top of the panel is indicated on each figure.
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(0, -45, +45, 90]

Radial Displacement 2 inches from Top of Panel

Load Levels Increase Away From Horizontal Axis

Load Levels (lbs/in) are 56, 106, 156, 215.9

-. 9

0

C

LUJ

QV w

(inches froDm 11e edge)

CE

0

M

FIGURE 39: Radial Displacement Profiles
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[0, -45, +45, 9os

1 Radial Displacement 3 inches from Top of Panel

Load Levels Increase Away From Horizontal Axis

Load Levels (lbs/in) are 56, 106, 156, 215.9

0

0

C

i oi

u-

UCD
XCD

CE (inches from left edge)

I CD

CM 4

FIGURE 40: Radial Displacement Profiles
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[0, -45, +45, 901]s

Radial Displacement 5 inches from Top of Panel (Top of Cut~out)

Load Levels Increase Away From Horizontal Axis

Load Levels (lbs/in) are 56, 106, 156, 215.9

0
C',J

0

CJ

0
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cl C:Th 0 2.00 4'.00 6.00 8 00 10.00 12.0(
PRN N
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* FIGURE 41: Radial Displacement Profiles
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(0, -45, +45, 90i1

Radial Displacement 6 inches from Top of Panel
(Across Center of Cutout)

Load Levels Increase Away From Horizontal Axis

Load Levels (lbs/in) are 56, 106, 156, 215.9

0
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0
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FIGURE 42: Radial Displacement Profiles
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[0, -45, +45, 901~

Radial Displacement 7 inches from Top of Panel
(Bottom of Cutout)

Load Levels Increase Away From Horizontal Axis

Load Levels (lbs/in) are 56, 106, 156, 215.9

0
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FIGURE 43: Radial Displacement Profiles
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(0, -.45, +45, 90 S

Radial Displacement 10 inches from Top of Panel

Load Levels Increase Away From Horizontal Axis

Load Levels (lbs/in) are 56, 106, 156, 215.9

0

0

IZ

Lu

N..#PRNEL LOCFITION
it C~j 0(inches from left edge)

0
CC

FIGURE 44: Radial Displacement Profiles
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One can see in viewing the figures that the panel's radial

" " displacements are relatively symmetric as the load

:. increases about the center of the panel for the first 3 load

levels. At the final load level (collapse load level) one can

see the loss of symmetry and the trough of layer displacements

that run from the upper right of the panel to the lower left

is easily seen. The other panels that were analyzed displayed

the same type of displacement profiles as the panel's load

increased as the small cutout panel had. In the comparison of

the radial displacements for the nonlinear analysis of the

cutouts it was noticed, and mentioned earlier, that the [0,

+45, -45, 90] s panel had a trough of displacements that were

about twice as deep as the [90, +45, -45, 01s panel did even

though they had the same top edge displacement and almost the

same collapse load. This is because of the difference in the

D term in the bending stiffness. In light of this, the

moment resultant profiles for these two panels were studied.

Like the displacement profiles, the same four load

levels were selected to show the resultant moment profiles

across the panel and down the panel. Figure 45 through 52 are

.Ae resultant moment profiles for the [0, +45, -45, 90] s

panel with the small cutout and figures 53 through 60 are the

moment resultant profiles for the (90, +45, -45, 01s panel

with a small cutout. In viewing Figures 45 through 60, one

can see that the moment resultants are relatively symmetric

*6 about the center of the panel for the first 3 load levels.
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~.1, [0, +45, -45, 9015

M 2.5 Inches From Top of Panel,

Load Levels Increase Away From Horizontal Axis

Load Levels (lbs/in) are 56, 106, 156, 215.9

0
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Vj4  T I *

CE:PANEL LOC RU
x ,.(inches from leit edQ-e)

LUJ

COJ

FIGURE 45: Moment Resultant Prof iles
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Mx 4.5 Inches. From Top of Panel

Load Levels Increase Away From Horizontal Axis

Load Levels (lbs/in) are 56, 106, 156, 215.9
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This corresponds to the symmetric radial displacement profiles

- previously shown. At the collapse load the symmetry of

the moment resultant is lost. The trough that appeared in the

displacement contours and was easily seen in the displacement

profiles can once again be seen easily in the moment resultant

profiles. Figures 45 through 48 show how the maximum moment

resultant (M ) goes from the upper left of the panel to the

lower right at the collapse load. Likewise, Figures 49

through 52 show the M resultant at various rows down the
y

panel and likewise indicate the trough of maximum concen-

trations at collapse. These eight figures correspond to the

displacement trough seen in the displacement contours (Figure

35) of a [0, +45, -45, 901 panel with a small cutout.

Figures 52 through 60 show the same phenomena and correspond

to the displacement contours shown in Figure 38. In recalling

how the D term affected the radial displacements of the

troughs in the two panels, an examination of the magnitude of

the moment resultants is warranted.

In comparing the moment resultants for the different

panels at the same location (i.e. Figure 45 with Figure 53, 46

with 54, etc.) one can notice a difference in the magnitude of

the moment resultants. In comparing the moment resultant

about the y axis (Mx ) one notices that the magnitude of the

moments for [0, +45, -45, 90] panel is greater than the

[90, +45, -45, 0]s panel. However, in comparing the moment

about the y axis (My) the opposite is true. The moment

y
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resultants for the [90, +45, -45, 0] panel is larger than

S

[0, +45, -45, 901 s panel. This can be accounted for by

the bending stiffness matrix. In the two different ply layups

the D and D22 terms are swapped (See Appendix B). In

the (0, +45, -45, 90] s panel the D term is roughly 4

times the D term. This accounts for the way the

magnitudes in the Mx and M moment resultants switch in
y

the panels. Also the moment about the x axis (M y) is less

than the moment about y axis (Mx) for a given curvature in

the [0, +45, -45, 90] ply layup while the opposite is true
s

*for the [90, +45, -45, 0] ply layup. This also can be seen

in comparing Figures 45 through 60.

Why these troughs of displacements and moments appear

can be explained by the eigenvectors of panels. Figures 61

and 62 is the eigenvector of the various panels with 2 inch by

2 inch cutouts. Figure 61 is the eigenvector plot of the [0,

+45, -45, 90] s panel. One will notice that a trough of

inward radial displacements run from the upper left to the

lower right of the cutout. The eigenvector plot of the (0,

-45, +45, 90] s panel is not shown however it is the same as

Figure 61 except the trough of inward displacements is now

oriented from the upper right to the lower left of the cutout.

Figure 62 is the eigenvector plot of the (90, +45, -45, 01s

panel with a 2 inch by 2 inch cutout. Notice that the trough

-* of negative displacement goes from the upper right to lower

left of the cutout. in reviewing Figures 34 to 60 one can see
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the history of the displacement pattern, that is how it

develops and the shape as the load level is increased from

zero up to collapse for the various panels with 2 inch by 2

inch cutouts.

As the load level is increased the radial displace-

ments and moment resultants build symmetically with respect to

the horizontal and vertical axis of symmetry on the panel. As

the collapse load is approached the panel has absorbed as much

energy as it can. The displacement contours and the moment

resultants are near their maximum and are still symmetric.

When the load level is increased, that is more potential

energy is added to the panel, the panel has reached its limit

point and , therefore, in order to absorb more energy the

displacement pattern shifts to that of the secondary loading

path (the eigenvector) to absorb the additional energy. This

was evident in all the displacement contour plots at the

collapse load for all the panels analyzed with a 2 inch by 2

inch cutout as can be seen by comparing Figures 34 through 38

to Figures 61 and 62 for the respective panels.

Now that the effects of a small cutout have been

examined with respect to the displacement patterns and moment

resultants, the effect of the larger cutout (4 inch by 4 inch)

will be examined. Figures 63 and 64 are the displacement

contours of the radial displacements at 78.5 lbs/in and

collapse load (131.2 lbs/in) respectively for the [0, +45,

-45, 90] panel with a 4 inch by 4 inch cutout. Likewise,
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Maximum Displacement = .084 inch

Ply Layup [0, -45, +45, 90J5

Contour Levels Are In 10 ths of Maximum Displacement
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F- Figures 65 and 66 are at the same corresponding load levels

but for the [0, -45, +45, 90] s panel. In studying these

four figures it can be seen that with a larger cutout the

displacement pattern at collapse is more symmetric about the

circumferential and longitudinal axis than the similar panel

with the smaller cutout. This is because the larger cutout

produces the bending effects earlier and the moment change is

more spread out, therefore, a more symmetric displacement

pattern. However, the slight amount of non-symmetry that is

shown at the center of the cutouts vertical edges can be seen

to change sides when the ply layup is changed by switching the

450 plies. This same thing was experienced with the smaller

cutouts. The moment resultants follow the radial displace-

ments as would be expected.

Figure 67 is the w component eigenvector contour plot

of the (0, +45, -45, 90] panel with a 4 inch by 4 inchks
cutout. In comparing the eigenvector plot to the displacement

contours at collapse there is very little similarity. In

essence, when the panel collapsed it did not go into the shape

of the eigenvector as the panels with the smaller cutouts (lid.

If the panel absorbs energy primarily through its axial

stiffness (the uncut panel and small cutouts) then the

displacement field at collapse is eigenvector oriented.

However, if the panel absorbs energy through both the axial

and bending stiffness then the displacement field is not

113
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W Component of Eigenvector of [0, +45, -45, 901 Pane.
with a 4 inch by 4 Inch Cutout
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eigenvector oriented. This difference can also be explained

, by comparing the amounts of radial displacements.

Furthermore, the panels with the small cutouts all had

radial displacements less than the thickness of the panel (.04

inches). The largest radial displacement in the panels with a

*. small cutout was .037 inches and that was on the panels with

- the zero degree outside plies. On the other hand, the panels

with the larger cutouts (4 inch by 4 inch) had radial displace-

S.ments of .084 inches which is over twice the panels thickness.

Therefore, the displacement field generated by the 2 inch by 2

__ inch cutout is not going to have that great of an effect on

the nonlinear collapse mode since the radial displacements are

small (less than the panels thickness). Therefore, at collapse

the panel will behave almost linearly and will have the shape of

the linear bifurcation while the radial displacements for the

-* panel with the large cutout are over twice the panel thickness,

their effect on the nonlinear collapse analysis will be greater.

. With these large displacements (greater than the panels

thickness) the nonlinear effect of the cutout on the collapse

analysis dictates the collapse displacement pattern. This

pattern is symmetric and there is no shift to the secondary

loading path, that is it followed the secondary loading path

* from the start. The nonlinearity of the presence of the 4 inch

by 4 inch cutout is felt by the panel throughout its loading

history while the nonlinearity of the smaller 2 inch by 2 inch

cutout does not effect the panels displacement pattern as much.
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The final item studied relative to panels with cutouts

=- was a change in the boundary conditions. In all the previous

panels studied, the boundary conditions were: (1) clamped on

the top with a u free, (2) clamped on the bottom with no free

DO, and (3) u, v, and rotation about u free on the sides. A

[0, +45, -45, 90] panel with the small cutout (2 inch by 2

inch) was chosen to see the difference in the boundary condi-

tions would create a drastic change. The change in boundary

conditions was that v would be fixed on the sides of the panel

x with u and the rotation about u still free. The boundary

conditions for the top and bottom of the panel remained the

same.

Figures 68 and 69 are the plots of the displacement

03 contours in the radial direction for the load levels of 81

lbs/in and at the collapse of 222.3 lbs/in. In comparing

Figures 68 and 69 to Figures 34 and 35 there is very little

difference and these are the corresponding load levels on the

same panels with just the change in the boundary conditions.

The panel with the v DOF fixed on the sides had a collapse

load of 222.3 lbs/in with a top edge displacement of .0104

inches and a maximum radial deflection of .036 inches. All of

these values are within 3% of the same values when v was free.

Since there are such small radial displacements involved, and

the nonlinear collapse analysis is close to the linear bifurca-

tion analysis, the changing of the v DOF in the boundary condi-

tion on the panel with the small cutouts had an insignificant
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*effect on the panel. However, the effect would probably be

greater on the larger cutouts with the larger displacements.

However, this was not studied.

Experimental Analysis Versus Analytical Study

Since the previous sections of this study were purely

analytical and some unexpected displacement patterns appeared

on the panels with small cutouts, the author was able to have

conducted a series of experiments on panels with small

cutouts. Four different panels, with two different ply

layups, were chosen. Two panels with a [0, -45, +45, 90s

layup and two panels with a (90, -45, +45, 0] s layup were

studied. The Air Force Flight Dynamics Laboratory conducted

the experimentation. The experimental setup and testing

procedure were the same as previously used by M. L. Becker in

reference [3]. There was a slight modification made in the

loading platform which can be readily seen by comparing Figure

70 to the figures in reference [3].

The panel was loaded with incremental load steps so

that a visual analysis could be made at various load levels.

The author could see the symmetric displacement fields being

generated by close observation at the lower load levels and

this corresponded to the pattern shown in the analytical

studies at the same load levels. As the collapse load was

approached, the author heard a loud snap as the panel shifted
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Front View of Panel with LVDT

Rear View of Panel

FIGURE 70: Experimental Setup
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Front View of Panel

Rear View of Panel

FIGURE 71: Radial Displacements of Panel At Collapse
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the displacement patterns. The large displacement patterns

generated at the collapse load are shown in Figure 71 and are

the same shape that were analytically predicted. A matrix of

Linear Variable Displacement Transducers (LVDT) were arranged

around the cutout and over the panel's surface in order to

measure radial displacements. Therefore, it was possible to

, compare several discretely located points. The top edge

displacement and five discrete points on the panel were chosen

for comparison between the analytical and experimental

displacements.

The two [0, -45, +45, 90] s panels' displacements

were averaged in the following comparisons since they had the

largest displacements and any error in the finite element

model would be magnified. Figure 72 is the plot of the total

load versus top edge displacements. As can be readily seen in

the figure, the model using STAGS is stiffer than the actual

panel. This same phenomena was evidenced earlier in the

comparisons of the experimental panel with surface imperfec-

tions and was expected. The experimental panel had a collapse

load of 2121 pounds which is 18% lower than the collapse load

of 2592 pounds predicted by STAGS. The experimental panel had

the largest top edge displacement because of the increased
flexibility. STAGS predicted only 47% of the actual panels

top edge displacement.

Figures 73 through 76 are the plots of the radial

displacements of four discrete points on the panel. The point
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" .of interest is indicated in the insert of each plot. The

comparison of the radial displacements in these figure is best

done at equal load levels.

By studying these figures, they show that the

analytical results produced by the STAGS compare excellantly

with the experimental results in the radial displacements.

Figures 74 through 76 show that the displacements were

relatively linear in STAGS for these selecteed points. The

experimental analysis verified this. In Figure 73, the

selected point showed a fairly large amount of no .'inearity in

the analytical plot. The experimental test showed the same

nonlinearity of this point, and the model with STAGS once

again compared favorably in both displaying the nonlinearity

as well as the magnitude of the displacement. For this point,

the experimental panel displayed a little more nonlinearity in

the radial displacements than STAGS did. However, STAGS

showed more flexibility (e.g. at 100 lbs./in) during the lower

load levels for this discrete point than the experimental

panel. Therefore, as the load level increases, and the

nonlinearity of the displacements for the experimental panel

becomes greater, the two curves will intersect and at the

higher load levels STAGS had the greatest stiffness. The end

result is that with these two combined effects the radial

displacement predicted analytically for this point are very

close to the experimental displacements.
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Figures 74 through 76 are the plots of discrete points

which did not exhibit a great amount of nonlinearity.

However, at all of these points the model was stiffer than the

experimental panel which was expected.

The last point to be compared was the lower left

corner of the cutout and is shown in Figure 77. Figure 77

shows that the experiemental displacement is large at this

point. Therefore, a greater coupling effect is resulting at

this point than is present in the analytical analysis. The

reader should observe that the radial displacement is 30%

greater than the thickness of the panel in the experimental

analysis. The analytical model did show that there would be

the greatest amount of nonlinearity at this particular point

as well as the largest radial deflections. The experimental

panel verified this fact.

Overall, the experimental study gave the same results

as the analytical study. The unexpected displacement pattern

that appeared in the analytical study was verified by the

experimental analysis. The model employed with STAGS did an

excellent job in predicting the magnitude of the radial

* displacement and compared very favorably with the experimental

analysis. The experimental analysis has verified the

analytical study of a panel with small cutout.
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Conclusions

The following statements and conclusions are based on

the analysis presented in this paper:

1. In different element comparisons it was observed

that the Y DOF in the 411 element is not needed in a linear

analysis. However, for a nonlinear collapse analysis this

extra DOF is necessary for compatability between elements when

-' modelling a curved panel with flat elements undergoing

relatively large rotation.

2. STAGS C-1, with a 411 element of one square inch

or less, can accurately model a composite panel with surface

imperfections or cutouts. The surface imperfection cannot be

smaller than the span of 2.8 elements for each half sine wave.

3. Using the nonlinear collapse analysis in STAGS C-I

with the 411 element, analytical top edge displacements and

collapse load agrees quite well with experimental data

obtained for a composite panel with accurately measured

surface imperfections. There has to be enough measurements

made on a panel to accurately predict the shape and size of

the surface imperfection in order that it may be modeled.

4. The number of surface imperfections that a panel

has affects the magnitude of the collapse load. With no

imperfections a panel will have the collapse load of the

linear bifurcation. As the number of imperfections is
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increased the collapse load decreases, this was based upon 9

surface imperfections for the panels analyzed. After that, as

the number of imperfections is increased the level collapse

load is increased.

5. The displacement pattern in the radial direction

of the panels with the surface imperfections followed the

initial shape of the imperfection. The radial inwards

displacements were of a greater magnitude that the outward

displacements at collapse.

6. A surface imperfection in the shape of the

eigenvector does not produce the lowest collapse load.

7. The collapse characteristics of composite panels

are dependent on the ply layup and the size of the cutouts.

8. Small cutouts (less than 5% of the panel surface

area) have a displacement pattern, at the collapse load, that

is different than the larger cutouts. The smaller cutouts

displacement pattern will build symmetrically about the

circumferential and longitundinl axis of symmetry and at the

collapse load, snap into the displacement pattern of the

eigenvector. The larger cutout had a displacement pattern

that stayed fairly symmetric at collapse and was close to the

* isotropic collapse pattern.

9. The load bearing capability of a composite panel

is very sensitive to the presences and size of a cutout.
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10. Changing the vertical boundary conditions in the

circumferential direction on a composite panel with the small

cutout had a negligible effect on the load bearing capability

and displacement pattern.

11. The radial displacements from the analytical

study of panels with small cutouts compared extremely

favorably with the experimental displacements.

12. The finite element model and the results of the

analytical study of panels with small cutouts has been

verified experimentally.
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APPENDIX A

User Problems With STAGS-i and STAPL

This appendix is to supplement the users manual for

STAGS and to help overcome some of the problems this author

encountered in using STAGS on the ASD Cyber computers. In

doing this thesis the author ran into five basic problems in

using the computer code. Each problem will be addressed and

briefly explained how they were overcome.

The first problem encountered in this project was to

trigger the nonlinear branch of the computer code. If the

imperfection is too small to cause rotations the nonlinear

branch of STAGS will not be triggered. However, it will

appear from the output that the imperfection has triggered the

nonlinear branch of STAGS. A quick and easy way to check

whether it has triggered is to plot the determinate of the

stiffness matrix versus applied load. The determinate should

approach zero when nonlinear collapse is going to occur. If

the nonlinear branch has not been triggered there are two

possible ways to correct this. The first is to simply

increase the amplitude of the imperfection. The second is to

apply a point load with a zero load factor increment so it

will not increase in magnitude when the load step is

incremented. One or two small point loads will usually help

trigger the nonlinear branch. However, problems were

encountered when too many point loads were used in trying to
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model different shapes of imperfections because the stiffness

-matrix became very unstable and collapse would occur at a very

small load.

After the nonlinear branch was triggered two problems

arouse almost simultaneously exceeding the mass storage limit

of the Cyber and the restart capability of STAGS. To extend

the mass storage of the Cyber an additional job control card

was necessary. This was accomplished by adding the job

control card command "Limit, 7000" prior to STAGS 1 (Figure

Al). The restart problem is not that simple. There are three

data cards for STAGS that must be correct for the restart capa-

bility to work. The first is the Bl data card. The post

processing switch IPost 1 can be defaulted to zero in which

only the last three load steps will be available for restart

or if any other positive integer is used all load steps will

be available for restart. The second card is the is the Dl

trategy parameter card. NSEC must be selected to be smaller

than the CPU seconds requested on the job control card. If

the run is a restart from a previous run then ISTART must be

the load step that you want to restart, insuring that the load

step was saved from the previous run with the IPOST 1

parameter. The third card in this sequence is the Cl Load

Multiplier record. For a restart to occur STLD(l) must agree

with the load desired from the load step selected by ISTART

(See Figure A2). One other problem that is unique to the

Cyber operating system is which computer should do the job,
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CSA or CSB? When a job goes to CSA the time field requested

by the user on the job control card is cut in half. This

leads to problems on restart because NSEC on the Dl data card

is not halved. Therefore, the job will usually terminate

without the program having a normal flow. This can be avoided

by either specifying to use CSB or insuring that NESC is less

than half of the CPU time requested on the job card. This is

accomplished by routing the Batch Stream to Input. The final

item on restart is TAPE 22 must be saved from the previous run

and reattached in order to get a restart. Make sure that when

it is reattached that it is made a local file because the

program will try to write on it. See Figure Al for a listing

of the job card and Figures A2 and A3 for example listings of

the data deck. In the control cards both TAPE 22 and TAPE 21

are saved as permanent files and the data deck will begin a

P . new case saving the solution data every third step and

terminating after 3300 seconds.

The next problem that was encountered was using the

plot routine that is associated with STAGS, known as STAPL.

The version of STAPL was previously altered by another user

before I received it and the Update tape was lost. The

previous user modified STAPL so that it could only be used on

the Calcomp 1038. Figure A4 is an example data deck for

STAPL, plotting 12 different plots. STAPL requires that

TAPE 21 and TAPE 22 be saved and that the Bi card for STAGS I

1 save the model geometry and primary solution data. STAPL can
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either be run in conjunction with STAGS or it can be run

ow separately from it. I did it both ways. In running STAPL in

conjunction with STAGS you need to know before hand what load

- steps and items you want to plot. You will have to return

TAPES 2, 10, 11, 12, 13, and 14 prior to executing STAPL. The

plot file will be generated on TAPE 47 and all you have to do

is route it to the plotter. If you are going to run STAPL

separately, TAPES 21 and 22 will have to be reattached prior

to executing. Note that in STAPL none of the secondary

solution data that was plotted could be verified. I do not

think that it is operational. I only had success with the

primary solution data.

The last problem I had was the computer operators at

AFIT and their working schedule. Many times the output from

STAGS is long and will either be terminated by the operator

before it is done printing or will sit in the output queue a

day or so before it is printed. With the extremely long files

(over 160 record blocks) that need to be saved for either

restart or plotting, I could not tie up the file space waiting

for the output to be printed. The way around this is to

rewind the output and route it to a remote output file. When

the job is complete, you can view the output by batching it

locally and paging it or using one of the text editors. After

viewing, route the output to the central site (TID=C) for

printing. This way you can view your output without having
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the hard copy in your possession. This works very well over

the weekends when the computer centers are closed or when the

line printer is down.

The last thing I would like to discuss to help the

future user of STAGS is some of the different parameters in

the STAGS data deck. In viewing Figures A2 and A3, the two

data decks are identical through the M2A card, shell geometry.

Most of the data cards are self explanatory and the users'

manual does a very good job of explaining the card sequence.

There were a few cards that caused some confusion for me and I

would like to try to prevent a future user from the same

confusion.

The first thing to remember is that in the STAGS Data

Decks something that is not specified defaults to zero. This

can save a lot of time since a lot of the parameters will not

have to be input. However, a small mistake can also be very

confusing. This will occur when the user thought he input a

data field into the computer correctly and the output

generated was not expected or there is a different error

printed. Therefore, a careful check of the data deck,

remembering the default value is zero, will prevent a lot of

wasted time.

There were two cards in the data decks that were

confusing. They were the Dl Strategy Parameter card and oddly

enough the 12 Material Property card. The Dl card has three

items on it that are used in the nonlinear solution
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algorithm and they require some consideration when choosing

them. In the 12 card, the requested Poissons ratio was a

different notation than used by most authors.

The three parameters on the D1 cards that are used in

the nonlinear solution algorithm are NCUT, NEWT, and DELX.

NCUT is the number of times that the solution algorithm can

cut the step increment. To pick a good value for this one

needs to consider his initial step increment and what he would

like as his final step increment. Then NCUT can be calculated

by figuring the number of times you have to half the initial

step increment in order to reach the final increment. For

example, with an initial load step of 10 and NCUT equal to 4

the final load step would be 1.25.

The next parameter to be considered is NEWT. NEWT is

the number of times the stiffness matrix can be refactored

*.. when there are convergence problems. There is no real easy

way to pick a value of NEWT to be used without having some

V. idea of the solution. If the solution is linear, then only

one factoring is needed. The greater amount of nonlinearity

in the solution the higher the number of refactoring is

needed. One should remember though that the general flow for

STAGS is to refactor the stiffness matrix first and then cut

the step size. Therefore the three factors, NEWT, NCUT, and

step size are all tied together. One should also remember

that it is very expensive to refactor a large stiffness matrix.
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The third factor on the D1 card that also has an

effect on the nonlinear solution algorithm is DELX. This is

the maximum value that any DOF can have between successive

iterations. That is, it is the convergence factor used with

the nonlinear algorithm. In essence, DELX is the parameter

that dictates the amount of error (residual error) that you

want in any given load step and also triggers the program as to

whether there are convergence difficulties or not depending on

the number of iterations done at that load step. Therefore,

all three of the parameters are dependent on the others and

only careful consideration and an idea of the solution will be

able to lead to good choices.

The last parameter that lead to any confusion was the

requested Poisson ratio on the 12 Material Properties card.

Most authors in composite material texts and papers use the

-following relationship between the different Youngs Modulus

and Poisson ratio:

E = 12 E (A)
V 21

However, STAGS has a different relation. It is given as:

E v 21 E (2A)
V 12
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2! In comparing the relations, it can be seen that the Poisson

w ratios have been switched. When working with STAGS be very

careful not to confuse which ratio they want input and which

relationship you are usually familiar with. It is just a

change of notation for Poisson ratio that is used. Be careful

and the best of luck in using STAGS.
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TCJ,T3800,1015000,CM150000. D710554,B0X4279.

LIMIT, 7000.

BEGIN, NOSFILE.

ATTACH, STAGS1, ID=D820138 ,MR=1.

GET, NAPS5, ID=JANISSE.

STAGS1,NAP55.

ATTACH, STAGS2, ID=D820138 ,MR1l.

RETURN,STAGS1.

STAGS 2.

REWIND,TAPE22.

REQUEST,NAP5522 ,PF.

COPY, TAPE22 ,NAP5522.

REWIND,NAP5522.

CATALOG,NAP5522 ,RP=180.

REQUEST, NAP5521 ,PF.

REWIND,TAPE21.

COPY,TAPE21,NAP5521,RP=180.

REWIND,OUTPUT.

ROUTE,OUTPUT, DC=PR, TID=I6.

FIGURE Al
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STATIC NONLINEAR ANALYSIS 0,+45,-45,90

C 8 PLYS .005 INCHES THICK
C [0,+45,-45,90] PANEL
3,1,3,3 $B1 NONLINEAR 9TATIC ANALYSIS
1,0 $B2 1 SHELL 0 ELEMENTS
1,3,1,3 $B3 1 MATERIAL 1 SHELL WALL
1.0,10.0,6.0E2 $C1 LOAD MULTIPLIER RECORD
0,3300,10,10,0,0.000001,1.0 $D1 STATEGY PARAMETERS
13,13 $F1 13 ROWS 13 COLUMNS
1,0 $11 MATERIAL NUMBER
20.5E06,0.0212439,.75E06,0.0,
1.0,1.3E06,1.0 $12 MATERIAL PROPERTIES
1,1,8 $K1 WALL CONFIGURATION
1,.005,0.0 $K2 PLY MATERIAL, THICKNESS,
1,.005,45.0 ORIENTATION
1,.005,-45.0
1,.005,90.0
1,.005,90.0
1,.005,-45.0
1,.005,45.0
1,.005,0.0 $K2 END OF ALL 8 PLYS
5 $M1 CYLINDRICAL SHELL UNIT
0.0,12.0,0.0,57.297795,12.0 $M2 SHELL GEOMETRY
1,]. $M5 SHELL WALL RECORD
6.0,28.65,4.0,19.1,.04 $M6 IMPERFECTION RECORD
411 $N1 ELEMENT NUMBER
0,0,0,0 $P1 USER DEFINED BC
100,000 $P2 U FREE ON TOP
110,100 $P2 U, V, RU FREE RT SIDE
000,000 $P2 CLAMPED ON BOTTOM
110,100 $P2 U, V, RU FREE LEFT SIDE
1 $Q1 1 LOAD SYSTEM
1,1.0 $Q2 1 LOAD SET SYSTEM A
1.0,2,1,1 $Q3 LOAD DEFINITION
1,1,1,0 $R1 PRINT OUTPUT

FIGURE A2: Data Deck For Panel With Imperfection
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STATIC NONLINEAR ANALYSIS 4X4 CUTOUT 0,+45,-45,90

C 8 PLYS .005 INCHES THICK
C [0, +45, -45, 901 PANEL
3,1,3,3 $BI NONLINEAR STA IC ANALYSIS
1,0 $B2 1 SHELL 0 ELEMENTS
1,0,1,0 $B3 1 MATERIAL 1 SHELL WALL
1.0,10.0,6.0E2 $CI LOAD MULTIPLIER RECORD
0,3300,10,10,0,0.0000001,1.0 $D1 STATEGY PARAMETERS
13,13 $F1 13 ROWS 13 COLUMNS
1,0 $I MATERIAL NUMBER
20.5E06,0. 0212439, . 75E06,0.0,
1.3E06,1.0 $12 MATERIAL PROPERTIES
1,1,8 $K1 WALL CONFIGURATION
1,.005,0.0 $K2 PLY MATERIAL, THICKNESS,
1,.005,45.0 ORIENTATION
1,.005,-45.0
1,.005,90 .0
1,.005,90.0
1,.005,-45.0
1,. 005,45.0
1,.005,0.0 $K2 END OF ALL 8 PLYS
5 $Ml CYLINDRICAL SHELL UNIT
0.0,12.0,0.0,57.2957795,12.0 $M2 SHELL GEOMETRY
1,0 $M5 SHELL WALL RECORD
411,0,0,1 $NI ELEMENT NUMBER
5,9,5,? $N8 4X4 CUTOUT IN CENTER
0,0,0,0 $P1 USER DEFINED BC
100,000 $P2 U FREE ON TOP
110,100 $P2 U, V, RU FREE RT SIDE
000,000 $P2 CLAMPED ON BOTTOM
110,100 $P2 U, V, RU FREE LT SIDE
1 $Q1 1 LOAD SYSTEM
1,1,0 $Q2 1 LOAD SET SYSTEM A
1.0,2,1,1 $Q3 LOAD DEFINITION
1,1,1,0 $R1 PRINT OUTPUT

FIGURE A3: Data Deck For Panel With Cutout
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PLOT OF 4X4 CUTOUT

12,1,6.0,0,0,0

2,1,-1,0,1,15,0, 3

.5,0. ,O.,28 .65 ,10., 10 ,3,3

3.0,6.0,9.0

3.0,6.0,9.0

2 ,1,-1,0, 1, 15, 0, 4,0, 0,-l

2,1,-1,0,1,15,0,5,0,0,-l

2,1,-1,0,1,15,0,6,0,0,-l

2,1,-1,0,1, 30,0,3,0,0,-i

2,1,-1,0,1,30,0,4,0,0,-l

2,1,-1,0,1,30 ,0,5,0,0,-l

2,1,-1,0,1,30,0,6,0,0,-l

2,1,-1,0,1,62,0,3,0,0,-l

2,1,-1,0,1,62,0,4,0,0,-l

2, 1,-i, 0,1, 62 ,0,5, 0,0,-!

2,1,-1,0,1,62,0,6,0,0,-l

,-.-. .FIGURE A4: Data Deck For STAPL
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.APPENDIX B

1. Composite Material Parameters

2. Reduced Stiffness Matrix

3. Transformed Stiffness Matrices

4. Extensional Stiffness Matrices

5. Bending Stiffness Matrices

NOTE: All of the panels used in this study had symmetric ply
layup, therfore, there is no coupling stiffness
matrix (B..)

ji

1. Material Properties used:

E 20.5 X 106 psi

E = 1.3 X 106 psi Note: _ =

2 1 2 =-v 2 1

""1 = .02127. 21 "

V1 2 =335

; 6
G = .75 X 10 psi

2. Reduced Stiffness Matrix [Qy]
y

-20. 644 .43766 0.

1.309 0. X 106 lbs/in

'.- Sym .75
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3. Transformed Reduced Stiffness Matrix.

Qij]
Q1Qij]

IQ 0iji = EQ..

]Q.] = 1 .309 .43766 0.1

20.644 0. X 106 psi

sym .75]

EQ. ~45 _ 6.457 5.322 +4.833

6.457 +4.833 X 106 psi

sym 5.269

4. Extensional Stiffness Matrices [A I.
1)

The [A. I is the same for the [0, +45, -45, 90] s , [0, -45,

+45, 901 and [90, +45, -45, 01 ply layup. It is:
S 5

.34867 .11539 0.

rs.34867 0. X 106 lbs/in

-"sym .12038

The [A ij is the same for the [90, 012s and [0, 9012s

panels, which is:

F.43906 .0175 0.1

.43906 0. X 106 lbs/in

Lsym .03
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5. Bending Stiffness Matrices ED ij].

ED.i] = 77.594 12.109 4.823

1) (0, +45, -45, 90] 19.724 4.823 in-lbs

" sym 13.767

-D. 0 F 77.594 12.109 -4.823
19.1724 -4.823 in-lbs

sym 13. 767

ED~~ 1 19.724 12.189 4.823
(90, +45, -45, 0]s  r7sym 4 823j in-lbs

ED . 9 7 71.194 -4.823 i-b
sym 13.767

SiJ [90, -45, +45, O12s 72 .89 -4.823 in-lbs

gym 13.767

ED. J 90 ,  2s- 39.137 2.341 0.

77.717 0. lbs-in

S[sym 4.00 l

ED. .1] to-02 77.717 2.341 0.

.39. 137 0. lbs-in

sym 4.00
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